索引性能技巧 | Elasticsearch: 权威指南 | Elastic
2024-11-14
如果你是在一个索引负载很重的环境, 比如索引的是基础设施日志,你可能愿意牺牲一些搜索性能换取更快的索引速率。在这些场景里,搜索常常是很少见的操作,而且一般是由你公司内部的人发起的。他们也愿意为一个搜索等上几秒钟,而不像普通消费者,要求一个搜索必须毫秒级返回。
基于这种特殊的场景,我们可以有几种权衡办法来提高你的索引性能。
性能测试永远是复杂的,所以在你的方法里已经要尽可能的科学。 随机摆弄旋钮以及写入开关可不是做性能调优的好办法。如果有太多种 可能 ,我们就无法判断到底哪一种有最好的 效果 。合理的测试方法如下:
显而易见的,优化性能应该使用批量请求。 批量的大小则取决于你的数据、分析和集群配置,不过每次批量数据 5–15 MB 大是个不错的起始点。注意这里说的是物理字节数大小。文档计数对批量大小来说不是一个好指标。比如说,如果你每次批量索引 1000 个文档,记住下面的事实:
这可是完完全全不一样的批量大小了。批量请求需要在协调节点上加载进内存,所以批量请求的物理大小比文档计数重要得多。
从 5–15 MB 开始测试批量请求大小,缓慢增加这个数字,直到你看不到性能提升为止。然后开始增加你的批量写入的并发度(多线程等等办法)。
用 Marvel 以及诸如 iostat
、 top
和 ps
等工具监控你的节点,观察资源什么时候达到瓶颈。如果你开始收到 EsRejectedExecutionException
,你的集群没办法再继续了:至少有一种资源到瓶颈了。或者减少并发数,或者提供更多的受限资源(比如从机械磁盘换成 SSD),或者添加更多节点。
写数据的时候,要确保批量请求是轮询发往你的全部数据节点的。不要把所有请求都发给单个节点,因为这个节点会需要在处理的时候把所有批量请求都存在内存里。
磁盘在现代服务器上通常都是瓶颈。Elasticsearch 重度使用磁盘,你的磁盘能处理的吞吐量越大,你的节点就越稳定。这里有一些优化磁盘 I/O 的技巧:
段合并的计算量庞大, 而且还要吃掉大量磁盘 I/O。合并在后台定期操作,因为他们可能要很长时间才能完成,尤其是比较大的段。这个通常来说都没问题,因为大规模段合并的概率是很小的。
不过有时候合并会拖累写入速率。如果这个真的发生了,Elasticsearch 会自动限制索引请求到单个线程里。这个可以防止出现 段爆炸 问题,即数以百计的段在被合并之前就生成出来。如果 Elasticsearch 发现合并拖累索引了,它会会记录一个声明有 now throttling indexing
的 INFO
级别信息。
Elasticsearch 默认设置在这块比较保守:不希望搜索性能被后台合并影响。不过有时候(尤其是 SSD,或者日志场景)限流阈值太低了。
默认值是 20 MB/s,对机械磁盘应该是个不错的设置。如果你用的是 SSD,可以考虑提高到 100–200 MB/s。测试验证对你的系统哪个值合适:
PUT /_cluster/settings { "persistent" : { "indices.store.throttle.max_bytes_per_sec" : "100mb" } }
如果你在做批量导入,完全不在意搜索,你可以彻底关掉合并限流。这样让你的索引速度跑到你磁盘允许的极限:
如果你使用的是机械磁盘而非 SSD,你需要添加下面这个配置到你的 elasticsearch.yml
里:
index.merge.scheduler.max_thread_count: 1
机械磁盘在并发 I/O 支持方面比较差,所以我们需要降低每个索引并发访问磁盘的线程数。这个设置允许 max_thread_count + 2
个线程同时进行磁盘操作,也就是设置为 1
允许三个线程。
对于 SSD,你可以忽略这个设置,默认是 Math.min(3, Runtime.getRuntime().availableProcessors() / 2)
,对 SSD 来说运行的很好。
最后,你可以增加 index.translog.flush_threshold_size
设置,从默认的 512 MB 到更大一些的值,比如 1 GB。这可以在一次清空触发的时候在事务日志里积累出更大的段。而通过构建更大的段,清空的频率变低,大段合并的频率也变低。这一切合起来导致更少的磁盘 I/O 开销和更好的索引速率。当然,你会需要对应量级的 heap 内存用以积累更大的缓冲空间,调整这个设置的时候请记住这点。
最后,还有一些其他值得考虑的东西需要记住:
index.refresh_interval
改到 30s
。如果你是在做大批量导入,导入期间你可以通过设置这个值为 -1
关掉刷新。别忘记在完工的时候重新开启它。
如果你在做大批量导入,考虑通过设置 index.number_of_replicas: 0
关闭副本。文档在复制的时候,整个文档内容都被发往副本节点,然后逐字的把索引过程重复一遍。这意味着每个副本也会执行分析、索引以及可能的合并过程。
相反,如果你的索引是零副本,然后在写入完成后再开启副本,恢复过程本质上只是一个字节到字节的网络传输。相比重复索引过程,这个算是相当高效的了。
官方地址:https://www.elastic.co/guide/cn/elasticsearch/guide/current/indexing-performance.html