引出问题:
“某头条新闻APP”新闻内容和新闻评论是1对多的关系?
在ES6.X该如何存储、如何进行高效检索、聚合操作呢?
相信阅读本文,你就能得到答案!
Mysql中多表关联,我们可以通过left join 或者Join等实现;
ES5.X版本,借助父子文档实现多表关联,类似数据库中Join的功能;实现的核心是借助于ES5.X支持1个索引(index)下多个类型(type)。
ES6.X版本,由于每个索引下面只支持单一的类型(type)。
所以,ES6.X版本如何实现Join成为大家关注的问题。
幸好,ES6.X新推出了Join类型,主要解决类似Mysql中多表关联的问题。
仍然是一个索引下,借助父子关系,实现类似Mysql中多表关联的操作。
Join类型的Mapping如下:
核心
- 1) “my_join_field”为join的名称。
2)”question”: “answer” 指:qustion为answer的父类。
PUT my_join_index { "mappings": { "_doc": { "properties": { "my_join_field": { "type": "join", "relations": { "question": "answer" } } } } } }
直接上以下简化的形式,更好理解些。
如下,定义了两篇父文档。
文档类型为父类型:”question”。
PUT my_join_index/_doc/1?refresh { "text": "This is a question", "my_join_field": "question" } PUT my_join_index/_doc/2?refresh { "text": "This is another question", "my_join_field": "question" }
路由值是强制性的,因为父文件和子文件必须在相同的分片上建立索引。
“answer”是此子文档的加入名称。
指定此子文档的父文档ID:1。
PUT my_join_index/_doc/3?routing=1&refresh { "text": "This is an answer", "my_join_field": { "name": "answer", "parent": "1" } } PUT my_join_index/_doc/4?routing=1&refresh { "text": "This is another answer", "my_join_field": { "name": "answer", "parent": "1" } }
每个索引只允许一个Join类型Mapping定义;
父文档和子文档必须在同一个分片上编入索引;这意味着,当进行删除、更新、查找子文档时候需要提供相同的路由值。
一个文档可以有多个子文档,但只能有一个父文档。
可以为已经存在的Join类型添加新的关系。
当一个文档已经成为父文档后,可以为该文档添加子文档。
GET my_join_index/_search { "query": { "match_all": {} }, "sort": ["_id"] }
返回结果如下:
{ "took": 1, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 4, "max_score": null, "hits": [ { "_index": "my_join_index", "_type": "_doc", "_id": "1", "_score": null, "_source": { "text": "This is a question", "my_join_field": "question" }, "sort": [ "1" ] }, { "_index": "my_join_index", "_type": "_doc", "_id": "2", "_score": null, "_source": { "text": "This is another question", "my_join_field": "question" }, "sort": [ "2" ] }, { "_index": "my_join_index", "_type": "_doc", "_id": "3", "_score": null, "_routing": "1", "_source": { "text": "This is an answer", "my_join_field": { "name": "answer", "parent": "1" } }, "sort": [ "3" ] }, { "_index": "my_join_index", "_type": "_doc", "_id": "4", "_score": null, "_routing": "1", "_source": { "text": "This is another answer", "my_join_field": { "name": "answer", "parent": "1" } }, "sort": [ "4" ] } ] } }
GET my_join_index/_search { "query": { "has_parent" : { "parent_type" : "question", "query" : { "match" : { "text" : "This is" } } } } }
返回结果:
{ "took": 0, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 2, "max_score": 1, "hits": [ { "_index": "my_join_index", "_type": "_doc", "_id": "3", "_score": 1, "_routing": "1", "_source": { "text": "This is an answer", "my_join_field": { "name": "answer", "parent": "1" } } }, { "_index": "my_join_index", "_type": "_doc", "_id": "4", "_score": 1, "_routing": "1", "_source": { "text": "This is another answer", "my_join_field": { "name": "answer", "parent": "1" } } } ] } }
GET my_join_index/_search { "query": { "has_child" : { "type" : "answer", "query" : { "match" : { "text" : "This is question" } } } } }
返回结果:
{ "took": 0, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 1, "max_score": 1, "hits": [ { "_index": "my_join_index", "_type": "_doc", "_id": "1", "_score": 1, "_source": { "text": "This is a question", "my_join_field": "question" } } ] } }
以下操作含义如下:
1)parent_id是特定的检索方式,用于检索属于特定父文档id=1的,子文档类型为answer的文档的个数。
2)基于父文档类型question进行聚合;
3)基于指定的field处理。
GET my_join_index/_search { "query": { "parent_id": { "type": "answer", "id": "1" } }, "aggs": { "parents": { "terms": { "field": "my_join_field#question", "size": 10 } } }, "script_fields": { "parent": { "script": { "source": "doc['my_join_field#question']" } } } }
返回结果:
{ "took": 1, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 2, "max_score": 0.13353139, "hits": [ { "_index": "my_join_index", "_type": "_doc", "_id": "3", "_score": 0.13353139, "_routing": "1", "fields": { "parent": [ "1" ] } }, { "_index": "my_join_index", "_type": "_doc", "_id": "4", "_score": 0.13353139, "_routing": "1", "fields": { "parent": [ "1" ] } } ] }, "aggregations": { "parents": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "1", "doc_count": 2 } ] } } }
如下,一个父文档question与多个子文档answer,comment的映射定义。
PUT join_ext_index { "mappings": { "_doc": { "properties": { "my_join_field": { "type": "join", "relations": { "question": ["answer", "comment"] } } } } } }
实现如下图的祖孙三代关联关系的定义。
question / \ / \ comment answer | | vote
PUT join_multi_index { "mappings": { "_doc": { "properties": { "my_join_field": { "type": "join", "relations": { "question": ["answer", "comment"], "answer": "vote" } } } } } }
孙子文档导入数据,如下所示:
PUT join_multi_index/_doc/3?routing=1&refresh { "text": "This is a vote", "my_join_field": { "name": "vote", "parent": "2" } }
注意:
- 孙子文档所在分片必须与其父母和祖父母相同 - 孙子文档的父代号(必须指向其父亲answer文档)
虽然ES官方文档已经很详细了,详见:
https://www.elastic.co/guide/en/elasticsearch/reference/current/parent-join.html
但手敲一遍,翻译一遍,的的确确会更新认知,加深理解。
和你一起,死磕ELK Stack!
作者:铭毅天下
转载请标明出处,原文地址:
https://blog.csdn.net/laoyang360/article/details/79774481
最新评论: